
–Romeo & Juliet
Act 2 Scene 2

What’s in a name?
That which we call a rose
by any other name would

smell as sweet.

Dependency
management?

Error values vs
exceptions?

Generic programming?

“What’s with all the short
variable names?!?”

–Andrew Gerrand

“Readability is the
defining quality of good
code. Good names are
critical to readability.”

Formal parameters, return values,
constants, functions, types,
methods, file names, and packages

These are all identifiers we can declare

Choose identifiers for
clarity, not brevity

–Russ Cox

“Every programmer has a
variable naming philosophy.

This is mine: A name's length
should not exceed its
information content.”

Local variables, formal parameters
and return values, struct fields, and
package level

You can declare many kinds of variables

The greater distance
between declaration and
use, the larger the identifer.

–George Orwell
Politics and the English language

“Never use a long word
where a short one will do.”

Lengthy bureaucratic
names need to justify
themselves

Names are contextual

for index := 0; index < len(s); index++ {
 //
}

for i := 0; i < len(s); i++ {
 //
}

type Person struct {
 Name string
 Age int
}

// AverageAge returns the average age of people.
func AverageAge(people []Person) int {
 if len(people) == 0 {
 return 0
 }

 var count, sum int
 for _, p := range people {
 sum += p.Age
 count += 1
 }

 return sum / count
}

Keep your friends close
and your declarations
closer

A variable’s name should
describe its contents, not
its type

var usersMap map[string]*User
var companiesMap map[string]*Company
var productsMap map[string]*Products

var (
 users map[string]*User
 companies map[string]*Company
 products map[string]*Products
)

Use a predictable naming
style

–Kernighan and Plauger
Elements of Programming Style

“Choose variable names
that won’t be confused.”

func Query(d *sql.DB)

var dbase *sql.DB

type Result struct {
 DB *sql.DB
}

return func() (database *sql.DB, err error) { ... }

var db *sql.DB

i, j, and k are commonly the loop induction variable for simple for loops.

n is commonly associated with a counter or accumulator.

v is a common shorthand for a value in a generic encoding function, k is commonly
used for the key of a map.

a and b are generic names for parameters comparing two variables of the same type.

x and y are generic names for local variables created for comparision

s is often used as shorthand for parameters of type string who’s contents are
opaque.

Collections; maps, slices, and arrays, should be pluralised.

Function names

–Mike Kerr

“If a function is hard to
name, maybe you’re giving

the function too much
responsibility.”

Functions should be
named for the result they
return

–Sam Gardiner

“If you don’t know what a thing
should be called, you cannot
know what it is. If you don’t

know what it is, you cannot sit
down and write the code.”

func Add(a, b int) int
func Sum(a, b int) int

result := Add(37, 9)
result = Sum(37, 9)

func Maximum(a, b int) int

package grpc

func NewClient() *Client

func NewClientWithTimeout(timeout time.Duration) *Client

type Option func(*Client) *Client

func NewClient(opts ...Option)

func WithTimeout(timeout time.Duration) func(c *Client)

client := grpc.NewClient(grpc.WithTimeout(10 * time.Second))

What about methods?

type BigDecimal struct {
 dollars, cents int
}

func (d *BigDecimal) Add(dollars, cents int)
func (d *BigDecimal) Sum(dollars, cents int)

var total BigDecimal
total.Sum(20, 5)
total.Add(9, 99)

A package's name should
describe its purpose

–Sameer Ajmani

“A package's name provides context
for its contents, making it easier for

clients to understand what the
package is for and how to use it. […]

Well-named packages make it easier to
find the code you need.”

An identifier's name
includes the name of its
package

The Get function from the net/http package
becomes http.Get when referenced by another
package.

The Reader type from the strings package becomes
strings.Reader when imported into other packages.

The net.Error interface from the net package is
clearly related to network errors.

Avoid package names
like base, common, or
util

–Sandy Metz

“[A little] duplication is far
cheaper than the wrong

abstraction.”

Resist the desire to create
a package taxonomy

–Ben Johnson

“The biggest issue Go developers
have with application layout is
thinking of packages as groups

instead of layers.”

Do not name your
package v2 🚨

import "github.com/pkg/term/v2" // bad

import "github.com/pkg/v2/term" // better

Don't let a package steal
good variable names

func WriteLog(context context.Context, message string)

func WriteLog(ctx context.Context, message string)

Conclusion

–David Crawshaw

“Use the shortest name that
carries the right amount of
information in its context.”

Brevity
A good name is concise. It carries a high signal to
noise ratio.

Precision
A good name accurately describes the thing it
represents.

Consistency
A good name should be predictable.

A variable’s name should describe its contents

Use the smallest scope possible, declare variables close to their
use.

Short variable names work well when the distance between their
declaration and last use is short.

Prefer single letter variables for loops and branches, single words
for parameters and return values, multiple words for functions
and package level declarations.

Repeating the type of the variable in its name does not make it
more type safe.

Functions, methods, and interfaces

Methods mutate state, functions transform data. Name
them appropriately.

Functions should be named for the result they return.

Methods should be named for the action they perform.

Be wary of conjunctions, they could indicate a single
function or method is doing too much.

A package's name should describe its purpose

Name your packages for what they provide, not what they
contain.

Don’t create package taxonomies

There are two parts to each exported identifer, the identifiers
name and its packages name, make use of that fact.

Package level variables deserve longer identifiers than locally
scoped ones because their scope encompases the entire program.

Don't blow common identifiers on a package’s name.

Thank you!
Thank you for coming to Go Get Community

